
Project Idea
A Jenkins plugin to wrap the https://github.com/cdancy/jenkins-rest library, allowing Pipeline scripts to interact
easily with other (or the self) Jenkins instances via the Jenkins REST API, and eliminating the need to parse
responses, making pipeline scripts more concise.

Note: there are other java libraries for the Jenkins REST. The author of this proposal was only familiar with the
aforementioned library. There is another library called the java client api, hosted in jenkins, which could also be
used. The student is expected to compare these libraries and make a recommendation prior to starting the
work.

This proposal is not about filling gaps in the Jenkins DSL.

From the Jenkins Pipeline DSL, we can call the http request plugin to talk to other services. But this plugin
does not “understand” the responses, it simply returns the header and the body of the response to the user. It
is up to the user to parse the JSON and extract the relevant pieces.

Interestingly, Jenkins itself has a REST API, so a Pipeline DSL could use the http request plugin to talk to the
Jenkins controller from an agent. But the user still has to parse the response.

An object oriented approach, leveraging an existing library that parses the responses into objects would be
easier for the user.

As explained in the mailing list, it is essential for build steps to return only simple data types, like string,
integers, lists of simple data types, maps of simple data types. Steps cannot return methods, nor objects with
behaviors. Also, using the GlobalVariable is not recommended, however it might be inevitable. The student is
expected to study the use of GlobalVariable in plugins that use it and ask for guidance on the Pipeline
Authoring SIG gitter chat on this matter. The student should study the docker pipeline plugin source code and
the pipeline loader plugin to understand.

In the following, we show how the finished plugin would look like from the user point of view in a Jenkins
Pipeline DSL program. This is not a specification, it is only an example. The student is expected to study the
the jenkins-rest library, the Jenkins Plugin tutorials and the Scripted Pipeline syntax, and propose a proper
Jenkins Pipeline DSL syntax for this project.

Quick start
There are many technologies to use together to form this plugin. The student who wishes to get started will
need to:

● Try out Jenkins REST APIs
● Try writing a small client using one of REST API Client libraries
● study plugin tutorials on how to write a Pipeline Step plugin

○ Tutorials listed on the student information page
○ Writing Pipeline compatible plugins
○ Writing Pipeline steps
○ Updating plugin for Pipeline

https://github.com/cdancy/jenkins-rest
https://github.com/jenkinsci/java-client-api
https://jenkins.io/doc/pipeline/steps/http_request/
https://jenkins.io/doc/pipeline/steps/http_request/
https://groups.google.com/forum/#!topic/jenkinsci-dev/x-EbjnWcFqs
https://javadoc.jenkins.io/plugin/workflow-cps/org/jenkinsci/plugins/workflow/cps/GlobalVariable.html
https://github.com/jenkinsci/docker-workflow-plugin
https://github.com/jenkinsci/workflow-remote-loader-plugin
https://github.com/cdancy/jenkins-rest
https://jenkins.io/projects/gsoc/students/#UsefulLinks
https://jenkins.io/doc/developer/plugin-development/pipeline-integration/
https://github.com/jenkinsci/workflow-step-api-plugin/blob/master/README.md
https://jenkins.io/blog/2016/05/25/update-plugin-for-pipeline/

○ looking at existing pipeline compatible plugins will be very useful. Example:
■ External Workspace Manager (look at the steps folder, the steps themselves, and their

execution classes)
● study the jenkins-rest library, try the examples in the wiki
● create a basic custom pipeline compatible plugin and load it in Jenkins (see the plugin tutorials)

Examples

The proposal for the implementation is to provide complete transparent access to all the jenkins-rest APIs by
mapping them as Scripted Pipeline DSL steps, so as to make the following possible:

To create a client to a jenkins server use the jenkinsClient step:
def jenkinsClient = jenkinsClient url: “jenkinsurl”, username: “user”, password: “secret-or-api-token”

The jenkins client can set a verbosity level (see this wiki for a groovy example of the underlying implementation
of the logger framework supporting the verbosity):
jenkinsClient.verbosity = “level”

The jenkins-rest client can set System properties to configure the underlying JClouds library:
jenkinsClient.setProperty("jclouds.so-timeout", "60000")

To query the system info, use the systemInfo step:
def resp = jenkinsSystemInfo client: jenkinsClient

The response is automatically parsed and the user can simply read the properties:
echo resp.errors

echo resp.errors[0].context

echo resp.errors[0].message

echo resp.jenkinsVersion

Of course, it gets more exciting when one realizes that jobs can be created and executed on other Jenkins
instances:
String config = "... an xml file describing the job to be created..."

def response = jenkinsCreateJob client: jenkinsClient, folder: null, name: “myjob”, job: config

You can check the response for errors:
if (response.errors.size() == 0) {

echo “Job created succesfully”

} else {

echo response.errors[0].context

echo response.errors[0].message

// fail in some way

}

Trigger a build on the remote Jenkins server:
def queueId = jenkinsBuild client: jenkinsClient, folder: null, job: "myJob"

Deal with errors in job submission by reading queueId.errors (same as above in reponse.errors).

Poll the queue until the job runs or gets thrown out:

https://github.com/jenkinsci/external-workspace-manager-plugin/
https://github.com/jenkinsci/external-workspace-manager-plugin/tree/master/src/main/java/org/jenkinsci/plugins/ewm/steps
https://github.com/cdancy/jenkins-rest
https://github.com/cdancy/jenkins-rest/wiki
https://github.com/cdancy/jenkins-rest/wiki

def queueItem = jenkinsQueueItem client: jenkinsclient, queueId: queueId.value()

while (true) {

if (queueItem.cancelled) {

error("Queue item cancelled")

}

if (queueItem.isExecutable) {

echo("Build is executing with build number: " + queueItem.executable.number)

break

}

sleep(10000)

queueItem = jenkinsQueueItem client: jenkinsclient, queueId: queueId.value()

}

The queueItem can be converted to a buildInfo when the loop exits. This queueItem can be used to poll until
the build is done:
def buildInfo = jenkinsBuildInfo client: jenkinsClient, folder: null, job: “myjob”, jobId:

queueItem.executable.number

while (buildInfo.result == null) {

sleep(10000)

buildInfo = jenkinsBuildInfo client: jenkinsClient, folder: null, job: “myjob”, jobId:

queueItem.executable.number

}

echo("Build status: " + buildInfo.result)

It is even possible to delete jobs:
def status = jenkinsDeleteJob client: jenkinsClient, folder: null, job: "myJob"

The polling algorithm could be embedded inside the plugin as a high level step. However, the plugin should
expose all the rest apis as pipeline steps to give the user full flexibility to implement their own algorithms.

It may be possible to generalize REST APIs with:
withClient(....) {

def res = restGet(“jobs/myJob/buildInfo”)

}

Expectations
The student is expected to compare the java libraries that implement the REST API and make a
recommendation. They are 1) https://github.com/jenkinsci/java-client-api and 2)
https://github.com/cdancy/jenkins-rest.

The student is expected to come up with a prototype to demonstrate the capability of the plugin, for example by
implementing a single REST API method and a single response type, before proceeding with a complete
implementation. This will help the student create proper step method calls and proper response objects.

Many interactions with a Jenkins server are possible via REST, see the full Javadoc for the Jenkins REST
library. Having low level access to the Jenkins REST API allows users to interact with Jenkins in ways that are
not provided by existing higher level plugins.

https://github.com/jenkinsci/java-client-api
https://github.com/cdancy/jenkins-rest
http://cdancy.github.io/jenkins-rest/docs/javadoc/

Advanced concept: it would be interesting to generate this plugin automatically simply by reading the
bitbucket-rest library. This would enable automatic updates to this project each time the underlying library is
updated, and it would also enable the automatic maintenance of the Jenkins-rest plugin and the Artifactory-rest
plugin.

Links
● The two java rest api libraries:

○ https://github.com/jenkinsci/java-client-api
○ https://github.com/cdancy/jenkins-rest

● Mailing list discussion: https://groups.google.com/forum/#!topic/jenkinsci-dev/x-EbjnWcFqs
● Discussion on REST: https://groups.google.com/forum/#!topic/jenkinsci-dev/mYeM5qA6tGM

Open questions
● GlobalVariables have been debated on the mailing list, and their use is controversial. However they do

work. Example of global variables usage in working plugins: docker, pipeline loader plugin.
● This approach has to be compared with the existing jenkins-java plugin.

Skills to study/improve
● Java
● REST API
● Jenkins Pipeline

https://docs.google.com/document/d/1Xz3I02T-QxlJW-1nt_CofF2I6se3hztF9ZsHqxu55nU
https://docs.google.com/document/d/1nZcgQuSLvNM-xhYLD60Q1MxPtCIpl5iUd3VOsSXUIis
https://docs.google.com/document/d/1nZcgQuSLvNM-xhYLD60Q1MxPtCIpl5iUd3VOsSXUIis
https://github.com/jenkinsci/java-client-api
https://github.com/cdancy/jenkins-rest
https://groups.google.com/forum/#!topic/jenkinsci-dev/x-EbjnWcFqs
https://groups.google.com/forum/#!topic/jenkinsci-dev/mYeM5qA6tGM
https://javadoc.jenkins.io/plugin/workflow-cps/org/jenkinsci/plugins/workflow/cps/GlobalVariable.html
https://groups.google.com/forum/#!topic/jenkinsci-dev/x-EbjnWcFqs
https://github.com/jenkinsci/docker-workflow-plugin
https://github.com/jenkinsci/workflow-remote-loader-plugin
https://github.com/jenkinsci/java-client-api

